个人学习 学,以致用

学习心得3 - 矩阵运算深入

2017-04-17
Geng

与标量的计算

每一个元素与标量运算

import numpy as np
lst = [2, 3, 7.9, 3.3, 6.9, 0.11, 10.3, 12.9]
v = np.array(lst)
print(v + 2)
[  4.     5.     9.9    5.3    8.9    2.11  12.3   14.9 ]


print(v - 1.38)
[  0.62   1.62   6.52   1.92   5.52  -1.27   8.92  11.52]


print(v * 2.2)
[  4.4     6.6    17.38    7.26   15.18    0.242  22.66   28.38 ]


print(v ** 2)
[  4.00000000e+00   9.00000000e+00   6.24100000e+01   1.08900000e+01
   4.76100000e+01   1.21000000e-02   1.06090000e+02   1.66410000e+02]

数组运算

元素之间的运算

A = np.array([ [11, 12, 13], [21, 22, 23], [31, 32, 33] ])
B = np.ones((3,3))
print("相加: ")
print(A + B)
print("\n相乘: ")
print(A * (B + 1))
相加: 
[[ 12.  13.  14.]
 [ 22.  23.  24.]
 [ 32.  33.  34.]]

相乘: 
[[ 22.  24.  26.]
 [ 42.  44.  46.]
 [ 62.  64.  66.]]

矩阵点乘

一种方法就是使用numpy的dot()方法

print(np.dot(A, B))
[[ 36.  36.  36.]
 [ 66.  66.  66.]
 [ 96.  96.  96.]]

另一种方法是将numpy数组转为numpy矩阵。

numpy数组运算是元素对元素的运算:

A = np.array([ [1, 2, 3], [2, 2, 2], [3, 3, 3] ])
B = np.array([ [3, 2, 1], [1, 2, 3], [-1, -2, -3] ])
R = A * B
print(R)
[[ 3  4  3]
 [ 2  4  6]
 [-3 -6 -9]]

如果将其转为numpy矩阵的话,直接用乘法运算符即可:

MA = np.mat(A)
MB = np.mat(B)
R = MA * MB
print(R)
[[ 2  0 -2]
 [ 6  4  2]
 [ 9  6  3]]


print(np.dot(MA, MB))
[[ 2  0 -2]
 [ 6  4  2]
 [ 9  6  3]]


print(np.dot(A, B))
[[ 2  0 -2]
 [ 6  4  2]
 [ 9  6  3]]

广播(Broadcasting)

广播是numpy提供的一项强大功能,简单说就是脑补。

一个大数组,一个小数组,大数组通过广播功能(脑补),变成一个同样形状的大数组,然后进行运算。

我们通过例子看下

import numpy as np
A = np.array([ [11, 12, 13], [21, 22, 23], [31, 32, 33] ])
B = np.array([1, 2, 3])
print("Multiplication with broadcasting: ")
print(A * B)
print("... and now addition with broadcasting: ")
print(A + B)
Multiplication with broadcasting: 
[[11 24 39]
 [21 44 69]
 [31 64 99]]
... and now addition with broadcasting: 
[[12 14 16]
 [22 24 26]
 [32 34 36]]

脑补过程:

以上过程相当于B进行了如下计算:

B = np.array([[1, 2, 3]] * 3)
print(B)
[[1 2 3]
 [1 2 3]
 [1 2 3]]

然后在看看其他例子

首先将B转置

B = np.array([1, 2, 3])
B[:, np.newaxis]
array([[1],
       [2],
       [3]])
A * B[:, np.newaxis]
array([[11, 12, 13],
       [42, 44, 46],
       [93, 96, 99]])

脑补过程:

有了上面经验,下面这个大脑补就不难理解了

A = np.array([10, 20, 30])
B = np.array([1, 2, 3])
A[:, np.newaxis]
A[:, np.newaxis] * B
array([[10, 20, 30],
       [20, 40, 60],
       [30, 60, 90]])

过程如下:


Similar Posts

Comments

你可以请我喝喝茶,聊聊天,鼓励我

Wechat Pay
wechat

Thanks!